LS Instruments

Get in touch

Radius of Gyration

The optical Radius of Gyration R_g is defined as: 

R_g^2 = \int r^2 g(r)dr

Where r is the distance from a reference point and g(r) is the so-called pair distance function:

g(r) = r^2 \int \Delta \rho(\mathbf{r}')\Delta \rho(\mathbf{r} - \mathbf{r}') d^3 \mathbf{r}'

where \Delta \rho(r) is the scattering length density. It's worth noting that g(r) contains information about shape and size of the particle and/or macromolecule, to each particle shape corresponds a  well defined g(r).

The radius of gyration can be obtained from static light scattering by performing either a Guinier or Zimm Plot.

Relation of the Radius of Gyration to the geometry of homogeneous objects:

Sphere

For a sphere the radius of gyration is related to the spheres geometric radius, R in the following way:

R^2_g = \frac{3}{5} R^2

Spherical shell

Spherical shell with outer and inner radii R_{\mathrm{o}} and R_i, respectively:

R^2_g = \frac{3}{5} \frac{ R^5_{\mathrm{o}} - R^5_{\mathrm{i}} }{ R^3_{\mathrm{o}} - R^3_{\mathrm{i}} }

Cylinder

Cylinder with radius R and length h:

R^2_g = \frac{ R^2}{2} + \frac{h^2}{12}

Hollow Cylinder

Hollow cylinder of length h with outer and inner radii R_o and R_i, respectively:

R^2_g = \frac{ R_{\mathrm{o}}^2 + R_{\mathrm{i}}^2}{2} + \frac{h^2}{12}

Ellipsoid

Ellipsoid with semiaxes a,b, and c:

R^2_g = \frac{ a^2 + b^2 + c^2}{5}

Disk

Flat disk with radius R

R^2_g = \frac{ R^2 }{2}


Related Products